
Abstract. The improved generator coordinate Hartree±
Fock (GCHF) method is extended to molecular systems.
The Gri�n±Hill±Wheeler±HF equations were solved by
an integral discretization technique. The method is then
implemented with the use of the GAMESS program and
applied to the H2, Li2, and LiH molecules. For these
molecules, sequences of basis sets of atom-centred
Gaussian-type functions are employed to explore the
accuracy achieved with our approach. For all systems
studied, our ground-state HF total energies are better
than those obtained with basis sets generated with the
original GCHF method for molecules and larger even-
tempered basis sets. For H2, Li2, and LiH, the di�eren-
ces between our best energies and the corresponding
numerical HF results are about 2 ´ 10)2, 1, and
4 ´ 10)1 lhartree, respectively. The dipole, quadrupole,
and octupole moments at the center of mass and electric
®eld, the electric ®eld gradient, the electrostatic poten-
tial, and the electron density at the nuclei were evaluated
and compared with results reported in the literature.

Key words: Improved generator coordinate Hartree±
Fock method ± Molecular systems ± Gaussian basis sets

1 Introduction

The use of ®nite expansions in analytic basis functions
lies at the heart of computational molecular electronic
structure theory [1, 2]. It is the choice of basis set that
ultimately determines the accuracy of a calculation.

An approach for the selection of basis sets arises from
the generator coordinate Hartree±Fock (GCHF) meth-
od [3]. In the GCHF method the one-electron functions
are integral transforms, i.e.

wi�1� �
Z

/i 1; a� �fi a� �da ; �1�
where /i are the generator functions (Slater- or Gauss-
ian-type functions ± STFs, GTFs ± or other functions),

fi are the unknown weight functions, and a is the
generator coordinate. The application of the variational
principle to calculate the energy expectation value
built with such one-electron functions leads to the
Gri�n±Hill±Wheeler±HF (GHWHF) equations [3].
The GHWHF equations are solved through numerical
integration. This is accomplished by discretization
preserving the integral character of the GCHF method.
The GCHF method [3] was successfully tested in the
generation of universal basis sets [4, 5] and adapted
Gaussian basis sets [6, 7] for light and heavy atoms.

Recently, Jorge and de Castro [8] developed the im-
proved GCHF (IGCHF) method and it was applied to
generate accurate Gaussian basis sets for ®rst-row atoms
[8] and second-row atoms and ions [9].

In 1991, the molecular GCHF (MGCHF) method
was presented together with applications to the H2, Li2,
and LiH molecules [10]. In the following years, this
method was used to calculate some properties of the
14-electron diatomic molecules N2, CO, and BF [11].

In this paper, we extend the IGCHF formalism to
molecular systems and report ®rst applications for the
ground electronic states of H2, Li2, and LiH. The pur-
pose of this work is to demonstrate the power of this new
method when basis sets of atom-centred GTFs are em-
ployed. This is achieved by comparing our HF total
energies of the diatomic molecules to those obtained
with the original MGCHF method [10], with even-
tempered basis sets [12], and numerical HF (NHF)
calculations [13±15]. We also compare our results of
some molecular properties with the corresponding ones
obtained with other approaches.

2 Method

For a molecular orbital (MO) Eq. (1) has the explicit form

wi�c� �
XN

n

XP

p

Z
finp�anp�/p�anp;~rc ÿ~Rn�danp : �2�

In Eq. (2) the index n runs for N atomic nuclei and p for the various
s, p, d, ... symmetries of the atomic functions /p,~rc is the coordinate
of the electron c, and ~Rn is that of nucleus n. The indexes for anp
admit the possibility of di�erent generator coordinates for di�erentCorrespondence to: F.E. Jorge
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atomic species and symmetries. For the case of the same atoms or
universal basis sets one could write ap only.

The variation of the total energy expectation value with respect
to the weight function, finp, leads to the molecular GHWHF
equations [10]XN

n

XP

p

Z
Fnp;n0p0 �anp; an0p0 � ÿ eiSnp;n0p0 �anp; an0p0 �finp�anp�

� danp � 0; i � 1; :::; I ; �3�
where ei are the orbital energies and the explicit forms of Fnp;n0p0 and
Snp;n0p0 are given in Ref. [10].

Equation (3) is solved through the integral discretization (ID)
technique [16], in which case Eq. (2) becomes

wi�c; T � �
X

n

X
p

X
t

Z
finp�anpt�/p�anpt;~rc ÿ~Rn�Danpt �4�

and one can interpret

Cinpt � Danptfinp�anpt� �5�
as the atomic linear combination coe�cient in a MO. In order
to make numerical integration through discretization e�cient, a
relabelling of the generator coordinate space was introduced
[16] according to

X � ln�a=A�; A > 1 ; �6�
where A is a scaling parameter determined numerically. Thus, the
coe�cient that appear in Eq. (5) becomes

Cinpt � ADXnptfinp�Xnpt� exp�AXnpt� :
The new generator coordinate space, W, is discretized for each s, p,
d, ... symmetry of each atom in an equally spaced mesh Xk

np so that

Xk
np � Xmin

np � �k ÿ 1�DXnp; k � 1; :::;Nnp : �7�
In Eq. (7) Nnp is the number of discretization points for atom n and
symmetry p, and Xmin

np and DXnp are the lowest value and the
constant increment for the generator coordinate, respectively. The
values of Xmin

np and Nnp are chosen to embrace an adequate inte-
gration range for the weight function finp. From Eq. (7) we can see
that the original MGCHF method [10] uses only one arithmetic
sequence of equally spaced points fXk

npg to generate basis sets.
One may wonder whether the results obtained with Eqs. (6) and

(7) can be improved within the framework of the MGCHF method
without adding more functions (GTF in our case), and we do this in
analogy with the IGCHF method [8] by proposing a simple mod-
i®cation that may produce improvements in the HF wavefunctions.
The idea is to use (when necessary) three arithmetic sequences with
the same principal quantum number. This allows di�erent distri-
butions for small, intermediate, and large exponents of GTFs to be
found.

In this new approach the generator coordinate space, W, is
discretized for each s, p, d, f, ... symmetry in three independent
arithmetic sequences:

Xk
np �

Xmin
np � �k ÿ 1�DXnp; k � 1;:::;Knp

X0min
np � �k ÿ 1�DX0np; k � Knp � 1;:::;Mnp

X00min
np � �k ÿ 1�DX00np; k � Mnp � 1;:::;Nnp :

8><>: �8�

For a given value of Nnp, the number of parameters to be optimized
for each symmetry of each atom is 3 times that of the original
MGCHF method (see Eq. 7).

Here we call attention to the fact that when we use Eq. (8), we
have no more equally spaced points fXk

npg as occur in Eq. (7),
because now three independent arithmetic sequences are used to
generate the basis function exponents for each symmetry of each
atom. We call this method to generate molecular basis sets the
molecular IGCHF (MIGCHF) method. To test the performance of
this method, we employ basis sets of primitive GTFs.

At each iteration of the self-consistent-®eld (SCF) procedure the
integrations are implemented numerically. This approach leads
formally to the Roothaan-HF (RHF) equations, with the advan-
tage of allowing the use of available RHF codes. Nonetheless, the

discretization points (exponents) are chosen to preserve the integral
character of the molecular GHWHF equations (Eq. 3). Technically
this procedure is implemented as follows. First, a test SCF run for a
molecule is executed with arbitrary Gaussian basis sets generated
with the IGCHF method [8] (or by another method). Then we use
increments of 0.0001 ®rst in the parameter, Xmin

np , of Eq. (8),
keeping all others ®xed until the lowest HF total energy value is
found. Next, we repeat the procedure for the parameter DXnp, now
for the optimum value of Xmin

np and still keeping the remaining
parameters with their initial values. The process is continued until
the last parameter DX00np of the last p symmetry is reacted, and then
it is successively repeated from the beginning until the total energy
stabilizes within ten signi®cant ®gures. Thus, at the end of this
optimization process we have optimized all parameters of Eq. (8) of
each symmetry that contributes to the ground state of each atom
that forms the molecule.

3 Basis sets of atom-centred GTFs

We begin by generating Gaussian basis sets for the
H2 and Li2 molecules using only symmetries of basis
functions which contribute to the ground states of the H
and Li atoms, i.e., using Eq. (8) we generate one 20s
arbitrary basis set for each molecule (Tables 1, 2). Then,
we optimize these basis sets for each molecule.

In the next step, we add polarization functions of p, d,
and f symmetries. As the polarization functions have
di�use character, we use only one arithmetic sequence of
Eq. (8) to generate these functions. Besides this, each set
of polarization functions of symmetry l ³ 1 (l is the an-
gular quantum number) is optimized from a previous
choice of an exponent subset of the s symmetry. Finally,
we search if it is necessary to add more functions of s, p,
d, and f symmetries to improve the HF total energy re-
sults. For LiH, we start with 20s9p4d4f and 20s11p6d1f
basis sets of H2 and Li2, respectively (Tables 1, 2). Then,
we reoptimize these basis sets for LiH and, ®nally, we
add more functions of s, p, d, and f symmetries when
necessary to improve the energy value. The smaller basis
sets of this molecule are subsets of the 21s11p6d1f (for
Li) and 20s9p4d4f (for H) basis sets (Table 3) and they
are not reoptimized.

In summary, the exponents of our atom-centred
GTFs are generated using Eqs. (6) and (8). The scaling
parameter A that appear in Eq. (6) has the same value
(6.0) for all calculations. For H2, Li2, and LiH, the op-
timum discretization parameters used to generate our
basis sets are shown in Tables 1, 2, and 4, respectively.
Only four decimal places are given, although the dis-
cretization parameters were calculated to a machine
accuracy of 10)9 for the energy calculations reported.

4 Results and discussion

By using sequences of primitive atom-centred GTFs,
we calculated the ground-state HF total energies of
the diatomic molecules H2, Li2, and LiH, where the
internuclear distances of 1.400, 5.051, and 3.015 a.u.,
respectively, were used. The discretized MIGCHF
method was implemented through the GAMESS pro-
gram [17]. The calculation were performed with a
Pentium II 300 MHz computer.
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The total energies (E0, in hartree) for H2 for various
basis sets of increasing size are presented in Table 5. Our
results are compared with those obtained with the
original MGCHF method [10], with even-tempered basis
sets [12], and with NHF calculations [13]. The exponents
of our GTFs are de®ned through the discretization
parameters shown in Table 1.

From Table 5, we can see that only two basis sets (20s
and 20s9p4d) generated with the MIGCHF method give
energies larger than the corresponding values calculated
with the larger basis sets (23s and 23s9p4d) presented in
Refs. [10, 12]. The energy value ()1.133629409 hartree)
calculated with our 20s9p4d4f is lower than the corre-
sponding ones obtained with the 23s9p4d4f basis
sets generated with the original MGCHF method
()1.133629397 hartree) and with the even-tempered

formula ()1.133629366 hartree). Besides this, the energy
obtained with our 21s10p5d4f basis set is better than the
energies calculated with the larger 23s9p4d4f2g1h and
30s15p5d4f even-tempered basis sets [12]. The main
reasons for the better performance of the MIGCHF
method presented here in comparison to the use of the
basis sets reported in Ref. [12] are

1. The MIGCHF method has three independent ar-
ithmetic sequences to describe the symmetries (s sym-
metry in our case) contributing to the ground states of
the atoms present in the molecules, thus we can describe
independently the inner, intermediate, and outer elec-
trons of these symmetries. We recall that the contribu-
tion of electrons of these symmetries to the total energy
is more important than that of the other electrons. On
the other hand, the even-tempered formula has only one

Table 1. Optimized discretization parameters for the H2 molecule
(A = 6.0, see Eq. 6). For s symmetry, the ®rst, second, and third
lines of the third column give the number of Gaussian-type
functions (GTFs) and the discretization parameters for the ®rst,

second, and third arithmetic sequences of the Eq. (8). For p, d, and
f symmetries, each line gives the number of GTFs and the
discretization parameters for only one arithmetic sequence of
Eq. (8)

NHp Symmetry GTF Xmin
Hp X0min

Hp X00min
Hp DXHp DX0Hp DX00Hp

20 s 15 )0.6379 0.1149
3 )1.3049 0.1611
2 )1.5432 0.1737

21 s 15 )0.6379 0.1149
3 )1.3049 0.1611
3 )1.5432 0.1737

22 s 15 )0.6379 0.1149
3 )1.3049 0.1611
4 )1.5432 0.1737

9 p 9 )0.3194 0.1043
10 p 10 )0.3194 0.1043
11 p 11 )0.3194 0.1043
13 p 13 )0.4237 0.1043
4 d 4 )0.1765 0.1253
5 d 5 )0.1765 0.1253
6 d 6 )0.1765 0.1253
7 d 7 )0.3018 0.1253
4 f 4 )0.4000 0.1999
5 f 5 )0.4000 0.1999

Table 2. Optimized discretization parameters for the Li2 molecule
(A = 6.0, see Eq. 6). For s symmetry, the ®rst, second, and third
lines of the third column give the number of GTFs and the
discretization parameters for the ®rst, second, and third arithmetic

sequences of Eq. (8). For p, d, and f symmetries, each line gives the
number of GTFs and the discretization parameters for only one
arithmetic sequence of Eq. (8)

NLip Symmetry GTF Xmin
Lip X0min

Lip X00min
Lip DXLip DX0Lip DX00Lip

20 s 13 )0.6361 0.1355
3 )0.6225 0.1370
4 )0.5146 0.1370

23 s 13 )0.6361 0.1355
5 )0.8965 0.1370
5 )0.5146 0.1370

25 s 13 )0.6361 0.1355
5 )0.8965 0.1370
7 )0.9256 0.1370

11 p 11 )0.6118 0.1234
6 d 6 )0.6904 0.1462
7 d 7 )0.6904 0.1462
1 f 1 )0.2170
2 f 2 )0.3651 0.1481
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geometric sequence to describe these three di�erent re-
gions for these symmetries. This is also the reason why
the energies calculated by us are better than the original
MGCHF method [10].

2. Wells and Wilson [12] take the orbital exponents
for basis functions with angular momentum quantum
number l greater than zero to be a subset of those with
l = 0. Furthermore, the orbital exponents for functions
with angular momentum quantum number l + 1 are
taken to be a subset of those with angular momentum
quantum number l. On the other hand, we optimize the
orbital exponents of all angular momentum quantum

numbers l. A similar procedure is used by da Costa et al.
[10] in the MGCHF method. Our larger basis set
(22s13p7d5f) gives a di�erence of 2 ´ 10)2 lhartree with
respect to the NHF energy reported by Laaksonen et al.
[13].

Here, it is important to say that in Ref. [10] the au-
thors did not calculate the total energy ()1.133629570)
of the H2 molecule using the 33s16p6d4f basis set, be-
cause this basis set contains 278 functions, surpassing
the capacity of the VAX program (255 functions). They
estimated the 4f contribution from the di�erence be-
tween the 23s9p4d and the 23s9p4d4f calculations. Using
the 33s16p6d4f basis set of Ref. [10] and the MGCHF
method, we have found (with the GAMESS program)
that this basis set is not fully linearly independent; thus,
the total energy estimated in Ref. [10] is only a crude
approximation.

Recently, universal basis sets for high-precision mo-
lecular electronic structure studies [18] and for accurate
second-order many-body perturbation theory calcula-
tions [19] have been developed. Besides atom-centred
basis sets, Moncrie� and Wilson [18, 19] used atom-
centred plus bond-centred basis sets in their calculations.

The results for E0 for Li2 calculated with various
basis sets generated with the MIGCHF and the original
MGCHF [10] methods are shown in Table 6. This table
also presents the NHF value reported by Sundholm
et al. [14]. From this table, we can see that the HF total
energies obtained with our Gaussian basis sets (except
for 20s11p) are always better than the corresponding
ones calculated with larger basis sets generated with the
original MGCHF method. The good performance of our
basis sets is again attributed to the MIGCHF method
presented here (see the previous discussion for the H2

Table 3. Ground-state Hartree±Fock total energy, E0 (hartree), of
the LiH molecule. The internuclear distance is 3.015 a.u.

Basis set E0 (this work) E0 [10]

21s on Li
20s on H )7.971831332 ±
23s on Li and H ± )7.971851679
21s11p on Li
20s9p on H )7.987166334 ±
23s11p on Li and H ± )7.987172545
21s11p6d on Li
20s9p4d on H )7.987348184 ±
23s11p6d on Li and H ± )7.987348220
23s11p6d4f on Li
23s11p6d1f on H ± )7.987351678
21s11p6d1f on Li
20s9p4d4f on H )7.987351690 ±
24s11p6d2f on Li
20s9p4d4f on H )7.987351899 ±
25s12p8d2f on Li
20s9p4d4f on H )7.987352041 ±
Numerical Hartree±Fock [15] )7.9873524

Table 4. Optimized discretization parameters for the LiH molecule
(A = 6.0, see Eq. 6). For s symmetry, the ®rst, second, and third
lines of the third column give the number of GTFs and the
discretization parameters for the ®rst, second, and third arithmetic

sequences of Eq. (8). For p, d, and f symmetries, each line gives the
number of GTFs and the discretization parameters for only one
arithmetic sequence of Eq. (8)

Atom NLiHp Symmetry GTF Xmin
LiHp X0min

LiHp X00min
LiHp DXLiHp DX0LiHp DX00LiHp

Li
21 s 13 )0.5006 0.1355

4 )0.6225 0.1370
4 )0.6516 0.1370

24 s 14 )0.4873 0.1241
4 )0.6225 0.1370
6 )0.9256 0.1370

25 s 14 )0.4873 0.1241
4 )0.6225 0.1370
7 )0.9256 0.1370

11 p 11 )0.4885 0.1234
12 p 12 )0.6118 0.1234
6 d 6 )0.5477 0.1497
8 d 8 )0.6974 0.1497
1 f 1 )0.0615
2 f 2 )0.0615 0.1581

H
20 s 15 )0.6374 0.1149

3 )0.6305 0.1179
2 )0.4248 0.1184

9 p 9 )0.3194 0.1043
4 d 4 )0.2439 0.1605
4 f 4 )0.4293 0.2096
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molecule). The energy calculated with our largest basis
set 25s11p7d2f di�ers by about 1 lhartree from the NHF
value [14]. For Li2, the corresponding discretization
parameters (basis-set exponents) are shown in Table 2.

E0 values for LiH obtained with basis sets generated
with the MIGCHF and MGCHF [10] methods and with
the NHF calculations [15] are presented in Table 3.
Again, from this table we can see that the energy ob-
tained with our basis set with 21s11p6d1f on Li and
20s9p4d4f on H is better than that obtained with the
basis set with 23s11p6d4f on Li and 23s11p6d1f on H
generated with the original MGCHF method [10]. We
again draw attention to the fact that the MIGCHF
method produces better energy values with smaller basis-
set sizes. The reason why the smaller basis sets (subsets
of the 21s11p6d1f on Li and 20s9p4d4f on H) give larger
energies than the corresponding ones obtained with the
MGCHF method is that when we gradually remove the
polarization functions of the LiH molecule, these basis
sets are not reoptimized with the new number of GTFs.
The di�erence between the energies calculated with our

largest basis set and the NHF calculations [15] is about
4 ´ 10)1 lhartree.

Our results for dipole (l), quadrupole (Qzz), and
octupole (Ozzz) moments at the center of mass and
electric ®eld (E), the electric ®eld gradients (qzz), the
potential (1/r), and the electron density (q) at the nuclei
for H2, Li2, and LiH, are listed in Table 7 and are
compared with literature results. The symbols Qzz and
qzz denote the zz component of the quadrupole moment
and the electric ®eld gradient tensors, respectively, and
Ozzz denotes the zzz component of the octupole moment
tensor. For all properties calculated for LiH, H2, and
Li2, we have used our largest basis sets and the inter-
nuclear distances presented in Tables 3, 5 and 6 respec-
tively. Our dipole moment value for LiH agrees with the
NHF [15] result with ®ve-®gure accuracy. For H2 and
Li2, our quadrupole moments and electric ®eld gradients
are in excellent agreement with the NHF [14, 20] results
and, in general, are closer to the NHF ones than earlier
results obtained with other basis sets [21±24]. Beside
this, our 1/r values for H2 and Li2 agree with those
calculated with the NHF [14, 20] method within the
number of ®gures reported. Finally, the q values calcu-
lated with the MIGCHF method for H2 and Li2 are in

Table 5. Ground-state Hartree±Fock total energy, E0 (hartree), of
the H2 molecule. The internuclear distance is 1.400 a.u.

Basis set E0 (this work) E0 [10] E0 [12]

20s )1.128541016 ± ±
23s ± )1.128542220 )1.128542094
23s9p ± )1.133571853 )1.133571746
20s9p )1.133572020 ± ±
20s9p4d )1.133628354 ± ±
23s9p4d ± )1.133628466 )1.133628387
23s9p4d4f ± )1.133629397 )1.133629366
20s9p4d4f )1.133629409 ± ±
23s9p4d4f2g1h ± ± )1.133629366
30s15p5d4fa ± ± )1.13362948
21s10p5d4f )1.133629514 ± ±
21s11p6d4f )1.133629538 ± ±
22s13p7d5f )1.133629548 ± ±
33s16p6d4fb ± )1.133629570 ±
Numerical
Hartree±Fock
[13]

)1.13362957 ± ±

a The 4f contribution is estimated from the 23s9p4d and 23s9p4d4f
energy di�erence in Ref. [12]
b The 4f contribution is estimated from the 23s9p4d and 23s9p4d4f
energy di�erence in Ref. [10]

Table 6. Ground-state Hartree±Fock total energy, E0 (hartree), of
the Li2 molecule. The internuclear distance is 5.051 a.u.

Basis set E0 (this work) E0 [10]

20s )14.8613561 ±
20s11p )14.8714608 ±
23s11p ± )14.8714650
23s11p6d ± )14.8715587
20s11p6d )14.8715588 ±
23s11p6d2f ± )14.8715602
20s11p6d1f )14.8715608 ±
23s11p6d2f )14.8715612 ±
25s11p7d2f )14.8715615 ±
Numerical
Hartree-Fock [14]

)14.871563

Table 7. Dipole (l), quadrupole (Qzz), and octupole (Ozzz)
moments at the centre of mass and electric ®eld (E), the electric
®eld gradient (qzz), the potential (1/r), and the electron density (q)
at the nuclei (a.u.) of H2, Li2, and LiH. Qzz and qzz denote the
zz components of the quadrupole moment and the electric ®eld
gradient tensors, respectively, Ozzz denotes the zzz component of
the octupole moment tensor

Property Ha
2 Lib2 LiHc

l 2.3618175
2.3618105 [15]
2.3618056 [10]

Qzz 0.4934196 10.6325292 )3.3700569
0.4934223 [20] 10.632695 [14]
0.4934222 [21]

Ozzz )6.3276833
E(Li) 0.001116 0.000387
E(H) 0.005385 0.001328
qzz(Li) ±0.004325 0.039996

±0.00428 [14]
±0.00999 [24]

qzz(H) 0.341375 )0.052229
0.341293 [20]
0.3416 [22]
0.3409 [23]

1/rLi 6.336750 )6.078026
6.33675 [14]
6.3372 [24]

1/rH 1.816298 2.228033
1.816298 [20]

q(Li) 13.794467 13.769340
13.82518 [14]

q(H) 0.449546 0.372933
0.450039 [20]

a Properties calculated with our 22s13p7d5f basis set on H. The
internuclear distance is 1.400 a.u.
b Properties calculated with our 25s11p7d2f basis set on Li. The
internuclear distance is 5.051 a.u.
c Properties calculated with our 25s12p8d2f and 20s9p4d4f basis sets
on Li and H, respectively. The internuclear distance is 3.015 a.u.
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good agreement with those computed with the NHF [14,
20] method.

5 Conclusions

Using the ID technique we have presented a new scheme
to integrate numerically the GHWHF equations, here
called the MIGCHF method. In this method, the GTF
exponents are not parameters to be variationally opti-
mized as usual, but they are generated by some criterion
(the ID technique) for integrating the GHWHF equa-
tions.

The present work shows, through basis sets generated
with the MIGCHF method, that a careful numerical
integration of the GHWHF equations is able to provide
highly accurate atom-centred GTFs to be used in mo-
lecular HF calculations. The main advantage of the
method presented here is that it can produce better en-
ergy values than the original MGCHF method [10] and
the even-tempered formula [12] with a smaller basis-set
size. For H2, Li2, and LiH, the di�erences between the
HF energies obtained in this work (with our largest basis
sets) and those calculated with NHF approaches are
always lower than 1.5 lhartree. For all molecules stud-
ied, the results for some of the properties calculated here
are in good agreement with the corresponding ones
obtained with the NHF [14, 15, 20] method.

Work is now in progress to explore the accuracy of
the MIGCHF method in calculations on molecules with
more electrons than considered in the present study,
including electron correlation e�ects.

Acknowledgements. This work was supported by the Brazilian
agencies CAPES/COPLAG-ES and CNPq. We acknowledge L.T.
Peixoto at Universidade Federal do EspõÂ rito Santo (UFES) for
valuable discussions. The calculations were performed with the
Pentium II 300 MHz computer of the Modelab laboratory at
UFES.

References

1. Huzinaga S (1985) Comput Phys Rept 2: 279
2. Davidson ER, Feller D (1986) Chem Rev 86: 681
3. Mohallem JR, Dreizler RM, Trsic M (1986) Int J Quantum

Chem Symp 20: 45
4. Jorge FE, Martins RF (1998) Chem Phys 233: 1
5. de Castro EVR, Jorge FE (1998) J Chem Phys 108: 5225
6. Jorge FE, Librelon PR, Canal Neto A (1998) J Comput Chem

19: 858
7. Jorge FE, Muniz EP (1999) Int J Quantum Chem 71: 307
8. Jorge FE, de Castro EVR (1999) Chem Phys Lett 302: 454
9. de Castro EVR, Jorge FE, Pinheiro JC (1999) Chem Phys 243:1
10. da Costa HFM, da Silva ABF, Mohallem JR, Simas AM, Trsic

M (1991) Chem Phys 154: 379
11. da Costa HFM, Simas AM, Smith VH Jr, Trsic M (1992) Chem

Phys Lett 192: 195
12. Wells BH, Wilson S (1989) J Phys B 22: 1285
13. Laaksonen L, PyykkoÈ P, Sundholm D (1983) Int J Quantum

Chem 23: 319
14. Sundholm D, PyykkoÈ P, Laaksonen L (1985) Mol Phys 56: 1411
15. Laaksonen L, Sundholm D, PyykkoÈ P (1984) Chem Phys Lett

105: 573
16. Mohallem JR (1986) Z Phys D 3: 339
17. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon

MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ,
Windus TL, Dupuis M, Montgomery JA (1993) J Comput
Chem 14: 1347

18. Moncrie� D, Wilson S (1994) J Phys B 27: 1
19. Moncrie� D, Wilson S (1998) J Phys B 31: 3819
20. PyykkoÈ P, Sundholm D, Laaksonen L (1987) Mol Phys 60: 597
21. Wells BJ, Wilson S (1985) J Phys B 18: L731
22. Snyder LC (1974) J Chem Phys 61: 5032
23. Davidson ER, Feller D (1984) Chem Phys Lett 104: 54
24. Cade PE, Sales KD, Wahl AC, quoted in Kahn LR, Goddard

WA III (1972) J Chem Phys 56: 2685

482


